

If childrenuse we womtechiques to solve problems without understanding or modelling the comext, heir maths skills wort fully evolve, says Mike Askew...

Children, from birth, are proficient problem solvers. By the age of two or three they have solved what are probably life's two biggest problems - how to walk and how to talk. As they get older they solve practical problems, such as sharing a bag of sweets fairly with others, long before they've heard of division. In this article, I look at how we can build on this natural propensity to solve problems in teaching mathematics.

Routine and nonroutine problems

Routine problems are problems children know how to solve based on their previous experiences The sort of thinking required by
routine
problems can
be described as
reproductive: the child only needs to recall or reproduce a procedure or method they have previously learnt. A problem like 'Apples', for example (see below), is likely to be a routine problem for most children at the upper end of primary school; they know to multiply the two numbers together without having to think deeply about what operation to use.

Apples

> Apples on a supermarket shelf are in bags of eight.
> If Jane buys six bags, how many apples is that?

4 Less successful problem solvers tend to focus on particular numbers and Keywords in problems. More successful problem solvers attend to the relationships between quantities in problems

MIKE ASKEW

In contrast, non-routine problems are where the learner does not immediately have a solution tucked under his belt. The problem solver has to put some effort into understanding the problem and creating, rather than recalling, a solution strategy. Nonroutine problems engage learners in productive thinking.

We often think of non-routine problems as needing to be unusual or not having, to us as adults, an immediately obvious method of solution. 'Stamps' is typical of this type of non-routine problem.

Stamps

> Clearing out a desk draw I found a collection of 5 p and 6 p stamps. > I have a parcel to post that needs 58p worth of stamps on it. > Can I create this exactly using the stamps I found?
$>$ If so, is there more than one way of doing this?
'Stamps' is fairly obviously nonroutine for almost anyone encountering it. But 'Apples' would be a non-routine problem for, say, a six-year-old who had not done much work on multiplication. Whether or not a problem is routine or non-routine does not simply lie in its formulation; it also depends on whether or not the problem solver has had extensive experience of that type of problem. What might seem like an obviously routine problem to adults can be treated as a nonroutine problem with younger learners.

In choosing problems to work with, we need to decide whether or not we think a problem will be routine or non-routine for the particular children working on it. In the rest of this article, the

8 ABOU HEAUTHOR
Mike Askew is Professor of Primary Education at Monash University, Melbourne. Until recently, he was Professor of Mathematics Education at King's College, University and Director of BEAM.

solutions are then shared with the class.

Creating
 mathematical models

Part of the productive thinking in working on rich, non-routine problems requires children to create mathematical models, and we can teach to support this.

Milk

> At the supermarket Myprice, milk costs $£ 1.08$ per litre.
$>$ This is 7 pence less per litre than milk costs at Locost. > How much does 5 litres of milk cost at Locost?

Children who treat 'Milk' as a routine problem won't fully engage with the context or meaning. They will focus on the numbers involved and look for 'keywords' they think will tell them what operation to use. When the quantities $£ 1.08$ and 7 pence are followed by the word 'less', these children think this means they have to subtract and so they take 7 pence away from $£ 1.08$ to get $£ 1.01$. Then the words 'how much' and '5 litres' suggest that $£ 1.01$ should be multiplied by five, giving $£ 5.05$ as the answer.

What is missing from this approach is attention to setting up an appropriate model of the problem. Ultimately this could be a mental model of the problem context, but it helps initially to encourage children to put something on paper that can be shared and discussed. In problems involving quantities, like 'Milk', simple bar diagrams can help children create the appropriate model. These help children examine the relationships between the quantities (as opposed to simply fixing on specific numbers and keywords).
Setting up a diagrammatic model begins with creating a representation of what is known in the situation. In this example, we know milk at Myprice costs £1.08, so a diagram for this would look like:

MYPRICE 11.08

This provides the basis for talking about what the picture for the price of milk at Locost is going to be. Will the bar be longer or shorter? Where is the bar for the 7 pence to be drawn?
Two different models can be

set up and children asked to describe the relationship between the prices at the two supermarkets, to see which diagram fits with the information in the problem. If the diagram for the price at Locost is shorter by 7 , then two statements can be made:

MYPRICE	21.08p
LOCOST	7 p

> Myprice milk costs 7 pence more than milk at Locost.
> Locost milk costs 7 pence less than milk at Myprice.

In comparison, making the bar for milk at Locost longer by 7 gives different comparative statements:
MYPRIGE E1.08p 7 p
LOCOST
> Myprice milk costs 7 pence less than milk at Locost.
> Locost milk costs 7 pence more than milk at Myprice.

Children can then talk about which of these situations fits with the wording in the problem.
Having established that Locost milk must be $£ 1.15$ a litre, children can go on to produce the bar diagram model for this.

Supporting nonroutine problem solving

Solving non-routine problems is harder than working through routine ones, just as facing a blank
canvas is more challenging than colouring in. When children are working through non-routine problems, we have to acknowledge the difficulty and the anxiety that can be provoked. Unfortunately, a lot of the research in mathematics education shows that the difficulties and tensions in non-routine problem solving are often alleviated by teaching that turns the non-routine into routine. One big study, for example, tracked 58 non-routine problems as they were played out in classrooms: only 22 of them continued to be treated as nonroutine throughout the lesson ${ }^{1}$. Reasons researchers identified as contributing to the 'decline' of non-routine problems included too much emphasis on getting the correct answer (at the cost of the problem solving processes) and reducing the level of challenge to implementing a known procedure.
Where the problems were played out as non-routine, three factors identified are worth noting. First, in choosing the tasks, the teachers made sure they would build on learners' prior knowledge - as I suggest a problem like 'Pizzas' can. Second, in contrast to focusing on getting the answer, the researchers observed what they called 'sustained pressure for explanation and meaning'. In other words, the teachers pressed for children to explain what and why they were doing what they were doing rather than simply focusing on whether or not they had got the correct answer. Third, the amount of time children were allowed to work on the problem was neither too long or too short: children need enough time to 'get into' a problem, but too much time can lead to a loss of engagement.

