
 HALF
 If children are struggling with fractions - or you yourself are a little wobbly - Jenny Houssart has a range of strategies that will clear up any partial understandings...

Love or hate fractions, there is no escaping them. A favourite weapon of advertisers and salesmen, they crop up everywhere. The footballer seeking an 'extra half a yard of pace' may betray misunderstanding of the underlying ideas, but teachers know they are far from straightforward.

What's the big idea?

A group of adults was asked to write a number as the starting point for an activity. One wrote $1 / 2$, leading others to claim, incorrectly, that it isn't a number. Using fractions is one of the ways that we expand the number system to contain more than just the numbers we use for counting (the natural numbers). As children get older, extension of the number system is a powerful idea that makes many things possible. Studying fractions is also likely to incorporate some other 'big ideas' of mathematics, in particular equivalence. Visual representations such as fraction walls are a great way of showing that $1 / 2=2 / 4=4 / 8$, but ultimately children will be helped if they can find equivalent fractions without drawing pictures, so it is important also to draw attention to the patterns and relationships in the numbers. There is also the idea of a fraction having other equivalent forms, for example decimals and percentages.

Food for thought

Using images of chocolate bars, pies and pizzas for teaching fractions is well established and offers children a familiar context and visual image, but just as the idea of living on chocolate is sadly not possible, a varied diet of ideas is needed when teaching fractions.
Many children will also recognise the idea of a fraction of a set of objects which links to the idea of fraction as an operator (i.e. a third of 12 is 4). Fractions can also be found on number lines or tape measure, and other contexts include fractions as a result of division or in the context of ratio - or even intensive qualities (liquids) if you like fruit juice with your pizza.
Many teachers have favourite fraction activities, like those shown here, but it is worth reviewing the variety of models that children see and checking that it is not too narrow.

ITp Fraction $\because \%$ favourite
 Many children's stories can be used to introduce mathematical problems. The Doorbell Rang by Pat Hutchins tells the story of 12 cookies being baked for two children, whereupon the doorbell keeps ringing with more and more children arriving. Assuming children get equal numbers of cookies, this situation can be seen as fractions of a set, or fraction as operator; children can calculate $1 / 2$ of 12 , then other fractions as the story unfolds. The same situation can also be seen as division and checked by multiplication, helping children to see the connections between these things. Similar problems can be invented with favourite characters or objects and children can be encouraged to decide on sensible numbers to use for such problems.

i ABOUTTHEAUTHOR

Jenny Houssart is Reader in education at the Institute of Education, University of London (ioe.ac.uk). Her book, Supporting Mathematical Thinking, is available from David Fulton.

Keep calm and carry on

With fractions, as with other aspects of mathematics, some things can be done to reduce the chances of misconceptions and errors occurring, but it is not possible or desirable to eradicate them completely; discussions about misconceptions and incorrect answers can be valuable. Using a range of models make it less likely that children see fractions just as shapes, or think they must always be less than one. Establishing understanding of fraction equivalence and ordering should help children understand approaches to fraction calculations rather than misremembering misunderstood algorithms.

Fraction notation and terminology also present challenges, with most teachers using a combination of practice and explanation to establish the correct format and still managing a smile when children talk of "twoths" alongside thirds. Judgements must be made about when to introduce the appropriate mathematical language, perhaps gently reinforcing the technical language alongside more everyday words which children may use initially.

